3.2.72 \(\int \frac {\tan ^3(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [172]

Optimal. Leaf size=78 \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}-\frac {2 \sqrt {a+a \sec (c+d x)}}{a d}+\frac {2 (a+a \sec (c+d x))^{3/2}}{3 a^2 d} \]

[Out]

2/3*(a+a*sec(d*x+c))^(3/2)/a^2/d+2*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/d/a^(1/2)-2*(a+a*sec(d*x+c))^(1/2)/
a/d

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3965, 81, 52, 65, 213} \begin {gather*} \frac {2 (a \sec (c+d x)+a)^{3/2}}{3 a^2 d}-\frac {2 \sqrt {a \sec (c+d x)+a}}{a d}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^3/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) - (2*Sqrt[a + a*Sec[c + d*x]])/(a*d) + (2*(a + a*Sec
[c + d*x])^(3/2))/(3*a^2*d)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3965

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(d*b^(m - 1)
)^(-1), Subst[Int[(-a + b*x)^((m - 1)/2)*((a + b*x)^((m - 1)/2 + n)/x), x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\tan ^3(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {(-a+a x) \sqrt {a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a^2 d}\\ &=\frac {2 (a+a \sec (c+d x))^{3/2}}{3 a^2 d}-\frac {\text {Subst}\left (\int \frac {\sqrt {a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=-\frac {2 \sqrt {a+a \sec (c+d x)}}{a d}+\frac {2 (a+a \sec (c+d x))^{3/2}}{3 a^2 d}-\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=-\frac {2 \sqrt {a+a \sec (c+d x)}}{a d}+\frac {2 (a+a \sec (c+d x))^{3/2}}{3 a^2 d}-\frac {2 \text {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{a d}\\ &=\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}-\frac {2 \sqrt {a+a \sec (c+d x)}}{a d}+\frac {2 (a+a \sec (c+d x))^{3/2}}{3 a^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 66, normalized size = 0.85 \begin {gather*} \frac {2 \left (-2-\sec (c+d x)+\sec ^2(c+d x)+3 \tanh ^{-1}\left (\sqrt {1+\sec (c+d x)}\right ) \sqrt {1+\sec (c+d x)}\right )}{3 d \sqrt {a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^3/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*(-2 - Sec[c + d*x] + Sec[c + d*x]^2 + 3*ArcTanh[Sqrt[1 + Sec[c + d*x]]]*Sqrt[1 + Sec[c + d*x]]))/(3*d*Sqrt[
a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(154\) vs. \(2(66)=132\).
time = 0.16, size = 155, normalized size = 1.99

method result size
default \(\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (3 \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}+3 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}-8 \cos \left (d x +c \right )+4\right )}{6 d \cos \left (d x +c \right ) a}\) \(155\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^3/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/6/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(3*cos(d*x+c)*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+3*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1
/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)-8*cos(d*x+c)+4)/cos(d*x+c)/a

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 91, normalized size = 1.17 \begin {gather*} -\frac {\frac {3 \, \log \left (\frac {\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} - \sqrt {a}}{\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} + \sqrt {a}}\right )}{\sqrt {a}} - \frac {2 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {3}{2}}}{a^{2}} + \frac {6 \, \sqrt {a + \frac {a}{\cos \left (d x + c\right )}}}{a}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/3*(3*log((sqrt(a + a/cos(d*x + c)) - sqrt(a))/(sqrt(a + a/cos(d*x + c)) + sqrt(a)))/sqrt(a) - 2*(a + a/cos(
d*x + c))^(3/2)/a^2 + 6*sqrt(a + a/cos(d*x + c))/a)/d

________________________________________________________________________________________

Fricas [A]
time = 2.87, size = 241, normalized size = 3.09 \begin {gather*} \left [\frac {3 \, \sqrt {a} \cos \left (d x + c\right ) \log \left (-8 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) - 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (2 \, \cos \left (d x + c\right ) - 1\right )}}{6 \, a d \cos \left (d x + c\right )}, -\frac {3 \, \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) \cos \left (d x + c\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (2 \, \cos \left (d x + c\right ) - 1\right )}}{3 \, a d \cos \left (d x + c\right )}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/6*(3*sqrt(a)*cos(d*x + c)*log(-8*a*cos(d*x + c)^2 - 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqrt((a*cos
(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) - 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(2*cos(d*x +
c) - 1))/(a*d*cos(d*x + c)), -1/3*(3*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*
x + c)/(2*a*cos(d*x + c) + a))*cos(d*x + c) + 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(2*cos(d*x + c) - 1))/
(a*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan ^{3}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**3/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(tan(c + d*x)**3/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 1.19, size = 126, normalized size = 1.62 \begin {gather*} -\frac {\sqrt {2} {\left (\frac {3 \, \sqrt {2} a \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} + \frac {2 \, {\left (3 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} a + 2 \, a^{2}\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}\right )}}{3 \, a d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/3*sqrt(2)*(3*sqrt(2)*a*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a) + 2*(3*(a*
tan(1/2*d*x + 1/2*c)^2 - a)*a + 2*a^2)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(
a*d*sgn(cos(d*x + c)))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {tan}\left (c+d\,x\right )}^3}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^3/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(tan(c + d*x)^3/(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________